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The phenomena of propagation and interaction of  loading and unloading waves, especially in one-dimensional and 
two-dimensional approximations,  were investigated in a whole series of  works (see, e.g., [1-6]). The analysis of  the re- 
bound process of  rods at the present time is considered only in a one-dimensional approximation [%10]. 

In this paper we numerically model  the process of  rebound of  deformable rods of  finite length from an absolutely 
rigid obstacle in a two-dimensional formulation. 

We shall consider a class of  problems connected with the collision of solid deformable bodies with different 
velocities in a two-dimensional formulation. Since body forces, heat conduction, and heat  sources are absent, the equations 
of  mot ion describing the s t ress-s t ra in  state of  such a medium in Lagrangian coordinates have the f9rm [ 11, 12] 
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where p is the density of the medium; u and w are the components  of  the velocity vector in projection onto the coordi- 
nate axes r and z respectively; t is the time; e is the specific internal energy. The stress tensor is represented in the form 

~ = - - P ~ u + S u  ( i = 1 , 2 , 3 ,  ] =  1 , 2 , 3 ) ,  

, {,, } i = 1  
where p =  J--~a z.a~u; S~l is the stress deviator with the components  S ,  Sa ,  Soe, S,z; 6~j = 0, i4= ] ; ~ is the shear 

1 

modulus. It is assumed that the stresses for tension are positive and for compression are negative. The value c~ = 0 

corresponds to a plane strain state, while the value c~ = 1 corresponds to an axisymmetric strain state. 

For  the closure of  the system of  equations (1) we use the plastic flow model, i.e., the second invariant of the 
deviator of  the stress tensor in the region of  plasticity satisfies the Mises yield condit ion 

"- , $2 2 , 2 2 g 
S~ - r  = q- S00 - r  2S=  ~< "5" Yo, (2) 

where Yo is the yield point  determinable from results of  uniaxial tension experiments. The equation of  the state of  the 
medium is represented in the form 

P ---- al(q - -  t) + a~(q - -  1) ~ + a3(q - -  t) z ,'-- a4~le, (3) 

where 7? = P/Po; Po is the initial density; al, a2, a~, aa are constants. Further,  ax = K, a2 = an = aa = 0. In the 

presence of hardening the yield surface is altered in the loading process, which can be taken into account in the first 
approximation by means of  a variable yield point  [3]. 

Problem 1. We consider the problem of a longitudinal impact of a cylindrical rod of length L o and radius R o on 

an absolutely rigid obstacle with a velocity v o (Fig. 1). The mass of the cylinder is m. 
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The given physical problem can be formulated mathematically as follows: find functions p, u, w, uif satisfying the 

system of equations (1)-(3), the initial conditions w = v o, p = Po' ~ = 0 in the region D (ABCD) and the boundary condi- 

tions oUnj = 0 on ABCD, Srz = 0 and w = 0 on DA, where nj are the components of the unit  vector of the normal to the 

boundary ABCD. It should be noted that the boundary in the process of deformation changes, while the contact surface 
AD, consequently, will be variable. This is taken into account during the solution of the problem. 

The solution of the problem is carried out by the Wilkins method [ 11 ]. The fundamental aim of the investigation 
at the same is to clarify the physics of the phenomenon of duration of the impact. This phenomenon only in one- 
dimensional formulation was investigated earlier in [3-9]. 

As the start of measurement of the duration of the impact we take the time instant when between the boundary of 
the body ABCD and the obstacle MN there appears at least one common point. This time instant is taken as t = 0. 

If in the process of interaction of the body ABCD and the obstacle MN there arises a state in which the surfaces of 
the body and the obstacle have no common points, then this instant will be taken as the end of the impact duration. We 
take t = t .  for it. 

Definition. The phenomena which arise in the case of a collision of the body ABCD and the obstacle MN after the 
time interval t ,  will be called a rebound. In the given case t .  is the time of contact or the time of duration of the impact. 
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The calculations carried out  for different velocities of  collision allowed us to compute the pat tern of  propagation 
of the elastoplastic waves and to understand the phenomena of  rebound. The example of the complex stress state arising 
in a steel rod with parameters Y0 = 0.012 mbar, R o = 0.3175 cm, L o = 3 cm, P = 7.87 g/cm 3, K = 1.7 mbar, p = 0.8 

mbar, v o = 75 m/see for the time instant t,  = 2.3 psec is presented in Fig. 2, when the wave did not  reach the surface BC. 

From the contact  boundary DA at the beginning of  the given process of collision there is formed a wave of compression 
of  two-wave configuration, with the velocities of mot ion of  these waves being substantially different'. The first is an elastic 
wave, while the ~econd is a plastic wave the amplitude and velocity of  which substantially depends on the initial velocity of 
the impact. The presence of  the transverse waves of  the load, emerging from the side surfaces AB and DC, lower the in- 
tensity of the longitudinal waves, and therefore the calculated s t ress -s t ra in  state of the rod differs from the results of 
solution of  problems obtained from the one-dimensional approximation.  Having reached the free surface CB, the elastic 
wave of  compression is reflected from it as an elastic wave of  unloading and moves to meet the front of  the plastic wave 
of  the load. At  the instant of their interaction, as follows from the solution of  the local problem of  break decomposition, 
the intensity of the plastic wave decreases with a jump,  while toward CB there will again propagate the front of  an elastic 
compression wave. Subsequently the process just  described is being repeated as long as the system of  elastic unloading 
waves does not  remove completely the amplitude of  the plastic compression wave. In each section r = const the process of  
wave interaction described above will be qualitatively analogous and will differ only by amplitudes and velocities of propa- 
gation. This leads to the circumstance that the unloading wave arrives at the surface MN in each section r = const at 
different time instants. Consequently, the contact  o f  the points DA with MN is disturbed at the same time. This is parti- 
cularly well seen in Fig. 3. By the numbers 1-5 we have shown the variation of  the velocity of  the points of the boundary 
DA, dependent  on time. I t  is interesting to note that departing points of  contact  of  DA can after a certain time again be 
joined with the rigid boundary MN. The nonsimultaneous separation of  contact  points of  DA from MN in the given case, 
in contrast  to the one-dimensional approximation,  is substantially connected with its two-dimensionality. 

For  practical determination of  the instant of  rebound it is convenient to use the relation 

= S (~dS, F 
s(t) 

where S(t) is the boundary of the contact DA. The becoming zero of F corresponds to the instant of rebound. Calcula- 
tions carried out for large values of the limit of elasticity Yo, such that plasticity does not arise, show that the time of 
rebound is practically constant for rods of the same length in the case of different collision velocities (curves I-3 in Fig. 4). 
The impact velocities respectively are 150, 100, and 50 m/see. The curves 4 and 5 are calculations for Y0 = 0.012 mbar  
and impact velocities 75 and 50 m/see. The oscillating form of  the relation is caused by the unloading waves from the free 
side surface. The time of' rebound for curves 1-3 coincides with the time of arrival of  the wave, reflected from the free 
end of  the rod, moving with the rod velocity. 

We consider the dependence of the dimensionless magnitude of  the time of  duration of  the impact,  t , / t o ,  on the 
velocity v o (Fig. 5, curve 1, t o is the time of  duration of  the impact in the case of  an elastic collision). The growth of the 
duration of  the impact  ( t , / t 0 )  as the velocity increases has a substantially stepped character which, generally speaking, is 
qualitatively confirmed by results of  experiments [8, 9]. The stepped form of  this relation is explained in the first instance 
by the wave character of  interaction of  the plastic wave with the elastic unloading wave. The qualitative pattern of such a 
process was described above. 

We consider the solution of  Problem 1, but only in the one-dimensional formulation of  the approximation of  the 
stress state, when o 0 = u = 0, the model  of  ideal plasticity. We shall show that the given problem in the class of continuous 

functions has no solution. For  the proof  we use the known solution, of  an analogous problem proposed in [ 1 ] in the frame- 
work of  an e las t ic -p las t ic  approximation of  the Prandtl scheme. In the expressions obtained in [1, 2] we go to the limit 
with C, ~ 0, where C, is the velocity of  the plastic wave. Then the value of  strains on the boundary of  contact  will be 

e ~ ~ , ,  which proves the statement. 

Thus, it remains to be clarified as to why the solution in the two-dimensional formulation gives a qualitatively 
correct results. This fact is explained by the circumstance that in the solution of  the problem 1 in the two-dimensional 
formulation, in comparison with the one-dimensional formulation, we take into account the variation of  the cross-sectional 
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area of  the rod, especially in the plastic region during the passage Of the e las t i c -p las t i c  wave along the rod. The account  
in the given case of  the variat ion of the area of  section in the loading process for the behavior of  the solut ion of the 
problem is quali tat ively analogous to the account  of  hardening in the relat ion (o z - e) in the solut ion in the one-dimensional  
approximation.  

We isolate in the init ial ly cylindrical rod an elemental  volume dV 

d V  = fdz,  

obta ined by sectioning the rod by two parallel planes the distance between which is dz. Here ](z) ~ f f ( z  -+- dz/2) ~ .  [f(z) + 

f (z  + dz) ]/2. The equat ion  of  conservat ion of  mass of  this e lemental  volume has the form 

p d V  = 9odVo, 

where Po and V o are the initial  values. The equat ions  of  mot ion  in this case for a quasihomogeneous approximat ion in 
Lagrangian coordinates  is wri t ten in the form 

]pdw/dt  = dT /dz ,  dz /dt  = w, T = aft(z) .  

The system of equat ions obta ined in the elastic region is closed by Hooke 's  law wri t ten in the form 

i Ov = ( t  Ow O~ z Ow 
v Ot - -  2v) ~ ,  -5-/- = E ~ ,  (4) 

where v = P.JP; ~ = }d2(k + ~); E = la(3~, + 2~)/(~. + ~) ; X and p are the L a m f  parameters.  The relation (4) is obta ined 

with the condi t ion  that  a r = 60 = 0, az =/= 0, e,. = - -  ve~, where the dots signify differentiat ion with respect to time. 

In the region of plastic strain we have 

~z = - -P  + Sz, 

S~ = • p = T(t /3)Y0.  

Since in the plastic region the material  of  the body is incompressible,  the volume remains constant ,  the fact which allows 
us to find the variation of the cross-sectional area f. 

Thus, the given physical problem reduces to the following mathematical  one: find funct ions p, w, a z , f, satisfying 

in the region D~(0 ~ t ~ oo, --L0 ~ z ~.~ 0) the system of  equat ions  

]p ~ or 
= ?-[z ' p d V  = p f l V o ,  T = a f f  (z)~ 

oa ow ov  t o;, ow (5) 
0-T = E - -  ] --  (t - -  2v) for az < Y0; Oz ' Oz ' v Ot ~'z 

Ow 01" O a  Ow 
]P ~-{ = -d-[z , 9 d V  = podVo, - ~  = E Tz , 

T = c ; f f ( z ) ,  a z = s g n ( a ~ ) Y 0  for ~ z ~ Y o ,  (6) 

dV, [(t_ % ] a v *  = 2,~)N- + t  d V  o, f =  d~;  

the initial  condi t ions  p = Po'  a = 0, w = w o in the region D ; the boundary  condi t ions  

Z = --L0, r = 0 for (5), z = O, to = 0 for (6) 

and the condi t ion  on the u n k n o w n  moving boundary  - L  o ~< z 1 (t) ~< 0 

a~ = t7o, [v~] = 0. 
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Here v 1 is the displacement;  [ ] is the jump of  the corresponding quantity.  

The problem thus formulated was solved by a numerical method analogous to [ 11 ]. The results of  the relations 
calculated, t . / t o ,  depending on the velocity of  impact are shown in Fig. 5 by curve 2. We see that  the given relation, just 

as the curve 1, is a clearly expressed stepped function. However, the quantitative results of these two solutions differ 
substantially. 

Problem 2. We consider the problem of  a longitudinal impact of  truncated conical rods of  length L o with radii 
R o and R 1 on an absolutely stiff obstacle with a velocity v 0 in the two-dimensional formulation. 

The mathematical  formulation of this problem is practically analogous to the Problem 1 ; therefore we do not  
present it here. The values of  the forces of  interaction F for two cones (L o = 3 cm, R o = 0.335 cm, R 1 = 0.3 cm - 

curve 1; L o = 3 cm, Ro= 0.3 cm, R 1 = 0.335 cm - curve 2) and a cylinder (L o = 3 cm, Ro=  0.3175 cm), the mass and 

kinetic energy of  which are the same, are presented in Fig. 6 (v o = 75 m/sec). Even for small cone angles the time of  re- 

bound substantially differs from the time of  rebound of  the cylindrical rod. This phenomenon is connected with the 

process of  accumulation of  the elastic wave of  loading and unloading as a result of  the variation of the cross-sectional area 
and their interaction with the incident plastic wave. At  the same time we should note that the impulse of action for the 
conical rod (L o = 3 cm, R o =  0.3 cm, R~ = 0.335 cm) will be greater than for the cylindrical rod. This fact is interesting 

further by the circumstance that the same kinetic energy can be translated into plastic deformation in a different manner, 
dependent on the wave process being excited in the medium. 
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